Объявление

Свернуть
No announcement yet.

Нейроморфные вычисления - новый подход к созданию искусственного интеллекта

Свернуть
X
Свернуть
 
  • Фильтр
  • Time
  • Show
Clear All
новых сообщений

    Нейроморфные вычисления - новый подход к созданию искусственного интеллекта

    7 октября 2020
    Владимир Киберов

    Нью-Дели, 7 октября 2020, 22:42 — REGNUM Компания Intel поставила 50 млн искусственных нейронов в Sandia National Laboratories — количество, эквивалентное мозгу небольшого млекопитающего. Эта поставка будет первой в течение трехлетнего контракта. Итогом работы национальной лаборатории Sandia будет считаться тот факт, что количество экспериментальных нейронов в окончательной модели достигнет 1 млрд или больше.
    О новом подходе к разработке искусственного интеллекта (ИИ) сообщает портал Analytics India Mag.
    Сотрудничество Intel и Sandia National Laboratories направлено на то, чтобы вывести нейроморфные вычислительные решения на новый уровень, создавая прототипы программного обеспечения, алгоритмов и архитектур.
    «С нейроморфным компьютером такого масштаба у нас появляется новый инструмент, позволяющий понять, как компьютеры, использующие «мозг», могут творить впечатляющие вещи, которые мы в настоящее время не можем сделать с помощью обычных компьютеров», — сказал Крейг Виньярд, руководитель проекта Sandia.
    Исследователи считают, что улучшенные алгоритмы и компьютерные схемы могут создавать более широкие приложения для нейроморфных компьютеров. Они также надеются определить, как мозговые процессоры используют информацию с вычислительной мощностью человеческого мозга.
    Хотя нынешние технологии ИИ обеспечивают использование возможностей суперкомпьютеров на исключительно высоком уровне, исследователи все ещё сталкиваются с определенными недостатками: машинное мышление, трансферное обучение (transfer learning — одно из направлений исследований в машинном обучении, которое изучает возможность применения знаний, полученных при решении одной задачи, к другой), физические размеры, чрезмерное потребление энергии и многие другие. ИИ, используемый в настоящее время, ограничен и учится только на предоставленных ему данных.
    Last edited by RomanSR; 08-10-20, 12:31.

    #2
    Современные алгоритмы машинного обучения или глубокие нейронные сети содержат несколько уровней обработки. Точность работы этих нейронных сетей повышается только в том случае, если они обучаются большему количеству данных, требующих огромных вычислительных мощностей.
    Нейроморфные же компьютеры стремятся обеспечить максимальную скорость вычислений, уменьшая при этом потребность в громоздких устройствах и специальных зданиях. Современные суперкомпьютеры нуждаются в мощности измеряемой в мегаваттах, тогда как человеческий мозг потребляет около 20 ватт энергии — этой цифрой и одержимы исследователи ИИ.
    Нейроморфные вычисления, по сути, включают в себя сборку искусственных нейронов для функционирования на основе принципов человеческого мозга. Его искусственные компоненты передают информацию аналогично действию живых нейронов, электрически пульсируя только тогда, когда синапс в сложной цепи поглотил достаточный заряд, чтобы произвести электрический всплеск. Такой компьютер пытается имитировать работу человеческого мозга, который имеет более 100 млрд нейронов и нейромодуляторов, которые меняют свою форму в соответствии с функцией, которую он должен выполнять.
    Обработка информации происходит в импульсной нейронной сети (spiking neural network — SNN), где каждый нейрон посылает независимые сигналы другим нейронам. Он имитирует естественные нейронные сети, существующие в биологическом мозге. Каждый «нейрон» в сети SNN может срабатывать независимо от других — он отправляет импульсные сигналы другим нейронам в сети, которые напрямую изменяют электрические состояния этих нейронов. Кодируя информацию в самих сигналах, SNN моделируют естественные процессы обучения, динамически переключая синапсы между искусственными нейронами в ответ на стимулы.
    Ответы на всплески могут быть представлены в виде континуума значений, а не нынешних «нуля» или «единицы», и, следовательно, обеспечить аналоговую работу, которая ближе к тому, как функционирует мозг. Кроме того, поскольку нейроны работают только в режиме пиковых нагрузок, они не потребляют энергию постоянно и, таким образом, экономят энергию. Поэтому нейроморфный компьютер потребляет гораздо меньше электроэнергии и весит намного меньше, чем современные персональные компьютеры.
    Хотя это является захватывающей областью исследований, учёные не достигли пока в ней успеха, поскольку человеческий мозг работает не так, как обычная компьютерная архитектура, на которой построены существующие в настоящее время алгоритмы. Важнейшей задачей нейроморфных исследований является достижение гибкости человеческого мозга и обучение на неструктурированной информации с энергоэффективностью человеческого мозга.

    Комментарий


      #3
      «Но мозг работает иначе, скорее, как взаимосвязанные графики маршрутов авиалиний, чем любая электронная схема типа «да-нет», обычно используемая в вычислениях. Таким образом, многие алгоритмы, похожие на работу мозга, не могут быть использованы, потому что современные компьютеры не предназначены для их выполнения», — сказал Виньярд.
      Нейроморфные вычисления были апробированы в таких областях, как беспилотные автомобили, классификация испарений, идентификация лица человека из множества случайных изображений и т.д.
      Исследователи надеются, что нейроморфные компьютеры улучшат машинное обучение в более сложных областях, таких как дистанционное зондирование и анализ интеллекта. Технология также изучается в моделировании вычислительной физики и других численных алгоритмах.
      Есть много компаний и проектов, которые работают над применением нейроморфных вычислений. Например, в рамках проекта Loihi Intel был создан чип Liohi с 130 000 нейронами и 130 млн синапсами, который отлично справляется с самообучением. Он поддерживает ускоренное обучение в неструктурированных средах для систем, требующих автономной работы и непрерывного обучения, с чрезвычайно низким энергопотреблением, а также высокой производительностью и емкостью.
      Нейроны TrueNorth от IBM нацелены на революцию в вычислительных системах. DARPA SyNAPSE, состоящий из миллиона нейронов, потребляет всего 70 милливатт. Кроме того, он может выполнять 46 млрд синаптических операций в секунду на ватт. Есть и другие компании, такие как HPE, Qualcomm и Samsung Electronics, изучающие область нейроморфных вычислений. Фактически, мировой рынок нейроморфных чипов, который оценивался в $2,3 млрд в 2020 году, по прогнозам достигнет размера в $10,4 млрд к 2027 году. Эти цифры предполагают, что нейроморфные компьютеры ждёт прекрасное будущее.

      Источник: https://regnum.ru/news/it/3084239.html


      Комментарий


        #4
        Originally posted by RomanSR View Post
        Нейроморфные вычисления - новый подход к созданию искусственного интеллекта ...
        Новое, это хорошо забытое старое.(с) Эта история будет как бы не старше "управляемого термояда". В оба проекта, за последние 60 с гаком лет, вбито куча трудов и средств при мизерных результатах. И чем дальше в лес тем толще партизаны.(с) Не думаю что в обозримой перспективе количество перерастет в качество.
        P.S. Тут в старых коробках книжка начала 60-х годов нашлась, не ругайте за качество фото.
        Прикреплённые файлы
        Last edited by Serg61; 15-10-20, 18:50.

        Комментарий


          #5
          Тут речь шла про писателя Питра Уоттса. У него эти SNN назывались мыслящими гелями,или зельцем.

          Комментарий


            #6
            Originally posted by nickbolt View Post
            Тут речь шла про писателя Питра Уоттса. У него эти SNN назывались мыслящими гелями,или зельцем.
            Неужели? Судя по статье индусы про это не в курсе раз лепят ИИ из "железа".

            Комментарий


              #7
              Originally posted by Serg61 View Post

              Неужели? Судя по статье индусы про это не в курсе раз лепят ИИ из "железа".
              Он фантаст ))

              Комментарий


                #8
                Originally posted by nickbolt View Post

                Он фантаст ))
                Художественная литература обсуждается в разделе "Книги".

                Комментарий

                Working...
                X
                Яндекс.Метрика